Copied to
clipboard

G = C42.40Q8order 128 = 27

40th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C42.40Q8, C23.745C24, C22.5182+ 1+4, C22.3972- 1+4, C428C4.52C2, (C2×C42).748C22, (C22×C4).256C23, C22.177(C22×Q8), C2.C42.446C22, C23.81C23.54C2, C2.8(C22.58C24), C2.64(C22.56C24), C2.52(C23.41C23), (C2×C4).140(C2×Q8), (C2×C4⋊C4).552C22, SmallGroup(128,1577)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.40Q8
C1C2C22C23C22×C4C2×C4⋊C4C23.81C23 — C42.40Q8
C1C23 — C42.40Q8
C1C23 — C42.40Q8
C1C23 — C42.40Q8

Generators and relations for C42.40Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=b2c2, ab=ba, cac-1=a-1b2, dad-1=ab2, cbc-1=b-1, dbd-1=a2b, dcd-1=b2c-1 >

Subgroups: 308 in 170 conjugacy classes, 92 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C428C4, C23.81C23, C42.40Q8
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8, 2+ 1+4, 2- 1+4, C23.41C23, C22.56C24, C22.58C24, C42.40Q8

Character table of C42.40Q8

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R
 size 11111111444444888888888888
ρ111111111111111111111111111    trivial
ρ211111111-1-111-1-11111-1-1-1-111-1-1    linear of order 2
ρ31111111111-1-1-1-1-111-11-11-1-11-11    linear of order 2
ρ411111111-1-1-1-111-111-1-11-11-111-1    linear of order 2
ρ511111111111111-1-111-1-1-1-1-1-111    linear of order 2
ρ611111111-1-111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ71111111111-1-1-1-11-11-1-11-111-1-11    linear of order 2
ρ811111111-1-1-1-1111-11-11-11-11-11-1    linear of order 2
ρ91111111111111111-1-111-1-1-1-1-1-1    linear of order 2
ρ1011111111-1-111-1-111-1-1-1-111-1-111    linear of order 2
ρ111111111111-1-1-1-1-11-111-1-111-11-1    linear of order 2
ρ1211111111-1-1-1-111-11-11-111-11-1-11    linear of order 2
ρ1311111111111111-1-1-1-1-1-11111-1-1    linear of order 2
ρ1411111111-1-111-1-1-1-1-1-111-1-11111    linear of order 2
ρ151111111111-1-1-1-11-1-11-111-1-111-1    linear of order 2
ρ1611111111-1-1-1-1111-1-111-1-11-11-11    linear of order 2
ρ172-22-22-22-2-222-2-22000000000000    symplectic lifted from Q8, Schur index 2
ρ182-22-22-22-22-22-22-2000000000000    symplectic lifted from Q8, Schur index 2
ρ192-22-22-22-2-22-222-2000000000000    symplectic lifted from Q8, Schur index 2
ρ202-22-22-22-22-2-22-22000000000000    symplectic lifted from Q8, Schur index 2
ρ214-4-44-444-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ224-444-4-4-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ234-4-4-444-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ2444-444-4-4-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ25444-4-44-4-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2644-4-4-4-444000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C42.40Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 76 103 13)(2 73 104 14)(3 74 101 15)(4 75 102 16)(5 36 70 95)(6 33 71 96)(7 34 72 93)(8 35 69 94)(9 107 40 48)(10 108 37 45)(11 105 38 46)(12 106 39 47)(17 56 80 115)(18 53 77 116)(19 54 78 113)(20 55 79 114)(21 111 84 52)(22 112 81 49)(23 109 82 50)(24 110 83 51)(25 121 88 62)(26 122 85 63)(27 123 86 64)(28 124 87 61)(29 58 92 117)(30 59 89 118)(31 60 90 119)(32 57 91 120)(41 126 97 68)(42 127 98 65)(43 128 99 66)(44 125 100 67)
(1 78 38 52)(2 18 39 110)(3 80 40 50)(4 20 37 112)(5 30 43 122)(6 92 44 62)(7 32 41 124)(8 90 42 64)(9 109 101 17)(10 49 102 79)(11 111 103 19)(12 51 104 77)(13 113 105 21)(14 53 106 83)(15 115 107 23)(16 55 108 81)(22 75 114 45)(24 73 116 47)(25 96 117 67)(26 36 118 128)(27 94 119 65)(28 34 120 126)(29 100 121 71)(31 98 123 69)(33 58 125 88)(35 60 127 86)(46 84 76 54)(48 82 74 56)(57 68 87 93)(59 66 85 95)(61 72 91 97)(63 70 89 99)
(1 27 11 60)(2 87 12 120)(3 25 9 58)(4 85 10 118)(5 53 99 24)(6 113 100 84)(7 55 97 22)(8 115 98 82)(13 62 46 29)(14 122 47 89)(15 64 48 31)(16 124 45 91)(17 67 50 33)(18 126 51 93)(19 65 52 35)(20 128 49 95)(21 71 54 44)(23 69 56 42)(26 37 59 102)(28 39 57 104)(30 73 63 106)(32 75 61 108)(34 77 68 110)(36 79 66 112)(38 119 103 86)(40 117 101 88)(41 81 72 114)(43 83 70 116)(74 123 107 90)(76 121 105 92)(78 127 111 94)(80 125 109 96)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,76,103,13)(2,73,104,14)(3,74,101,15)(4,75,102,16)(5,36,70,95)(6,33,71,96)(7,34,72,93)(8,35,69,94)(9,107,40,48)(10,108,37,45)(11,105,38,46)(12,106,39,47)(17,56,80,115)(18,53,77,116)(19,54,78,113)(20,55,79,114)(21,111,84,52)(22,112,81,49)(23,109,82,50)(24,110,83,51)(25,121,88,62)(26,122,85,63)(27,123,86,64)(28,124,87,61)(29,58,92,117)(30,59,89,118)(31,60,90,119)(32,57,91,120)(41,126,97,68)(42,127,98,65)(43,128,99,66)(44,125,100,67), (1,78,38,52)(2,18,39,110)(3,80,40,50)(4,20,37,112)(5,30,43,122)(6,92,44,62)(7,32,41,124)(8,90,42,64)(9,109,101,17)(10,49,102,79)(11,111,103,19)(12,51,104,77)(13,113,105,21)(14,53,106,83)(15,115,107,23)(16,55,108,81)(22,75,114,45)(24,73,116,47)(25,96,117,67)(26,36,118,128)(27,94,119,65)(28,34,120,126)(29,100,121,71)(31,98,123,69)(33,58,125,88)(35,60,127,86)(46,84,76,54)(48,82,74,56)(57,68,87,93)(59,66,85,95)(61,72,91,97)(63,70,89,99), (1,27,11,60)(2,87,12,120)(3,25,9,58)(4,85,10,118)(5,53,99,24)(6,113,100,84)(7,55,97,22)(8,115,98,82)(13,62,46,29)(14,122,47,89)(15,64,48,31)(16,124,45,91)(17,67,50,33)(18,126,51,93)(19,65,52,35)(20,128,49,95)(21,71,54,44)(23,69,56,42)(26,37,59,102)(28,39,57,104)(30,73,63,106)(32,75,61,108)(34,77,68,110)(36,79,66,112)(38,119,103,86)(40,117,101,88)(41,81,72,114)(43,83,70,116)(74,123,107,90)(76,121,105,92)(78,127,111,94)(80,125,109,96)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,76,103,13)(2,73,104,14)(3,74,101,15)(4,75,102,16)(5,36,70,95)(6,33,71,96)(7,34,72,93)(8,35,69,94)(9,107,40,48)(10,108,37,45)(11,105,38,46)(12,106,39,47)(17,56,80,115)(18,53,77,116)(19,54,78,113)(20,55,79,114)(21,111,84,52)(22,112,81,49)(23,109,82,50)(24,110,83,51)(25,121,88,62)(26,122,85,63)(27,123,86,64)(28,124,87,61)(29,58,92,117)(30,59,89,118)(31,60,90,119)(32,57,91,120)(41,126,97,68)(42,127,98,65)(43,128,99,66)(44,125,100,67), (1,78,38,52)(2,18,39,110)(3,80,40,50)(4,20,37,112)(5,30,43,122)(6,92,44,62)(7,32,41,124)(8,90,42,64)(9,109,101,17)(10,49,102,79)(11,111,103,19)(12,51,104,77)(13,113,105,21)(14,53,106,83)(15,115,107,23)(16,55,108,81)(22,75,114,45)(24,73,116,47)(25,96,117,67)(26,36,118,128)(27,94,119,65)(28,34,120,126)(29,100,121,71)(31,98,123,69)(33,58,125,88)(35,60,127,86)(46,84,76,54)(48,82,74,56)(57,68,87,93)(59,66,85,95)(61,72,91,97)(63,70,89,99), (1,27,11,60)(2,87,12,120)(3,25,9,58)(4,85,10,118)(5,53,99,24)(6,113,100,84)(7,55,97,22)(8,115,98,82)(13,62,46,29)(14,122,47,89)(15,64,48,31)(16,124,45,91)(17,67,50,33)(18,126,51,93)(19,65,52,35)(20,128,49,95)(21,71,54,44)(23,69,56,42)(26,37,59,102)(28,39,57,104)(30,73,63,106)(32,75,61,108)(34,77,68,110)(36,79,66,112)(38,119,103,86)(40,117,101,88)(41,81,72,114)(43,83,70,116)(74,123,107,90)(76,121,105,92)(78,127,111,94)(80,125,109,96) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,76,103,13),(2,73,104,14),(3,74,101,15),(4,75,102,16),(5,36,70,95),(6,33,71,96),(7,34,72,93),(8,35,69,94),(9,107,40,48),(10,108,37,45),(11,105,38,46),(12,106,39,47),(17,56,80,115),(18,53,77,116),(19,54,78,113),(20,55,79,114),(21,111,84,52),(22,112,81,49),(23,109,82,50),(24,110,83,51),(25,121,88,62),(26,122,85,63),(27,123,86,64),(28,124,87,61),(29,58,92,117),(30,59,89,118),(31,60,90,119),(32,57,91,120),(41,126,97,68),(42,127,98,65),(43,128,99,66),(44,125,100,67)], [(1,78,38,52),(2,18,39,110),(3,80,40,50),(4,20,37,112),(5,30,43,122),(6,92,44,62),(7,32,41,124),(8,90,42,64),(9,109,101,17),(10,49,102,79),(11,111,103,19),(12,51,104,77),(13,113,105,21),(14,53,106,83),(15,115,107,23),(16,55,108,81),(22,75,114,45),(24,73,116,47),(25,96,117,67),(26,36,118,128),(27,94,119,65),(28,34,120,126),(29,100,121,71),(31,98,123,69),(33,58,125,88),(35,60,127,86),(46,84,76,54),(48,82,74,56),(57,68,87,93),(59,66,85,95),(61,72,91,97),(63,70,89,99)], [(1,27,11,60),(2,87,12,120),(3,25,9,58),(4,85,10,118),(5,53,99,24),(6,113,100,84),(7,55,97,22),(8,115,98,82),(13,62,46,29),(14,122,47,89),(15,64,48,31),(16,124,45,91),(17,67,50,33),(18,126,51,93),(19,65,52,35),(20,128,49,95),(21,71,54,44),(23,69,56,42),(26,37,59,102),(28,39,57,104),(30,73,63,106),(32,75,61,108),(34,77,68,110),(36,79,66,112),(38,119,103,86),(40,117,101,88),(41,81,72,114),(43,83,70,116),(74,123,107,90),(76,121,105,92),(78,127,111,94),(80,125,109,96)]])

Matrix representation of C42.40Q8 in GL12(𝔽5)

011300000000
403400000000
420100000000
214000000000
000040400000
000010320000
000020100000
000002400000
000000000142
000000002442
000000000133
000000001123
,
010000000000
400000000000
000400000000
001000000000
000012000000
000044000000
000033010000
000002400000
000000000100
000000001000
000000004440
000000000441
,
001000000000
000100000000
400000000000
040000000000
000043000000
000001000000
000022040000
000033400000
000000000010
000000004440
000000001000
000000001041
,
310100000000
124000000000
043100000000
101200000000
000030300000
000000110000
000000200000
000004300000
000000000001
000000000114
000000001041
000000001000

G:=sub<GL(12,GF(5))| [0,4,4,2,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,0,0,0,0,0,1,3,0,4,0,0,0,0,0,0,0,0,3,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,3,1,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,1,4,1,1,0,0,0,0,0,0,0,0,4,4,3,2,0,0,0,0,0,0,0,0,2,2,3,3],[0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,3,0,0,0,0,0,0,0,0,0,2,4,3,2,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,1,0,4,4,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,1],[0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,3,0,0,0,0,0,0,0,0,3,1,2,3,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,4,0,4,0,0,0,0,0,0,0,0,0,0,0,1],[3,1,0,1,0,0,0,0,0,0,0,0,1,2,4,0,0,0,0,0,0,0,0,0,0,4,3,1,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,1,2,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,1,4,1,0] >;

C42.40Q8 in GAP, Magma, Sage, TeX

C_4^2._{40}Q_8
% in TeX

G:=Group("C4^2.40Q8");
// GroupNames label

G:=SmallGroup(128,1577);
// by ID

G=gap.SmallGroup(128,1577);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,456,758,723,436,794,185,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^2*c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^-1>;
// generators/relations

Export

Character table of C42.40Q8 in TeX

׿
×
𝔽